

Evaluation of EUV mask pattern inspection using DUV reticle inspection tool

Tsukasa Abe, Takashi Adachi, Tadahiko Takikawa, Hiroshi Mohri, Hidemichi Imai, Yasushi Sato and Naoya Hayashi

¹ Dai Nippon Printing Co., Ltd. (Japan)

Contents

- Introduction
- Experimental
 - Test sample
 - Evaluation tool
 - Designed defect
 - Defect printability simulation
- Inspection results
 - Si capping CrN buffer structure
 - Ru capping structure
- Real defect sample
- Summary

Introduction

 Differently from optical photomask, EUV mask defect inspection uses only reflected light

Inspection test sample

Reflectivity curve of EUV mask

Optical property was optimized for defect inspection with 257nm wave length

Evaluation tool

- Program defect size measurement
 - · CD-SEM

: KLA 8250R

- Pattern edge detection & area size measurement
 - : In-house software
- Defect print simulation
 - Kirchhoff simulation.
- Inspection tool: KLA586
 - Wave length 257nm / Pixel size 90nm
 - DD / DB

Programmed defect

Resist patterning : 50kV EB writer with PCAR 300nm Main pattern : 1:1 dense line : hp 260nm/180nm @ mask

2 3 5 7 8 9 1 4 6 line cut 1x1 clear 1x1 opaque 1x2 clear 1x2 opague small CD large CD pin hole pin dot bridge extension extension extension extension

SEM images: main pattern size 260nm

Absorber

Program defect size measurement

Defect size definition

1. Measured defect size = square root of area (nm)

SEM image pattern edge definition area size measurement

2. CD error = |defect line CD - reference line CD|

Defect size measurement results

Defect printability simulation sample

Defect inspection results ~Si cap / CrN buffer structure: 260nm hp ~

Inspection sensitivity difference between w/ and w/o buffer pattern was not observed

EUVL symposium 2007

Light intensity profile of defect

Good light intensity profile was obtained at 260nm pattern.

Defect inspection results

~Si cap / CrN buffer structure: 180nm hp ~

	sample	Mode	Tool	Pixel	Algorithm	Sensitivity	#runs
а	w buffer	DDR	KLA5X6	P90	UPA	high	5
b	w/o buffer	DDR	KLA5X6	P90	UPA	high	5

500

1000

position nm

2000

1500

Defect inspection results ~ Ru Capping structure ~

~ 260 nm hp ~

	Mode	Pixel	Algorithm	Sensitivity	#runs
а	DDR	P90	UPA	high	10
b	DBR	P90	UPA	high	10

							Ŋ			710	'	-90			FA			1111	3111		_	10								
		0 1					2			3			4			5			6			7			8			9		
No	0 0																													
		in hol	_		oin do	_	line cut		bridge			1x1 c		_	1x1 opaque exter			1x2 clear extens		2 ора	_				_	large CD				
	size	a	b	size	а	b	size	а	b	size	а	b	size	а	b	size	а	b	size	а	b	size	а	b	size	a	b	size	а	b
0																													\dashv	
1																									3.0			1.3	\dashv	
2																									2.9			3	\dashv	
3							28																		5.7			5.9	\dashv	
4							62																		7.0			9	\rightarrow	
5							64												30						10.3			10	\dashv	
6							76						27						37			19			10.2			12	\dashv	
7						_	90			27			30						52			29			15.9			15		
8							115			33			37						59			40			17.1			16	10	
9							148			51			50			27			62			53			19	80		17		
10							157			44			48			29			74			53			20.5			22		
11						_	157			58			54			35			84			64			22.8			21		
12							165	70	10	64	90		69			40			86	90		66		50	23.7			26		
13							171			80			75			39			94			75			26.5			26		
14							174		80	85			77			39			105			80			26.8			30		
15						_	175			125			83			59			112			85			32.2			29		
16							181			111			88			60			117			96			34.1			31		
17							185			141			95	70		60			126			100			37.2			35		
18							185			147			96			67			130			117			40			35		
19	94.9						191			152			107			71			139			118			40.6			40		
20	94						188			157			109			75			146			124			40			43		
21	88			\vdash			197			161			117			82			152			132			46			42		
22	110						197			165			121			84			165			139			48			46		
23	116			\vdash			200			170			124			89			173			146			49			48		
24	119			-			205			173			137			94			174			156			50			49		
25	129			\vdash			209			179			137			104			183			159			51			52		
26	144			0.1			211			181			140			108			192			168			54			54		
27	171		000	91			214			187			146			111			199			174			49			62		
28	163		80				215			193			153			114			206			179			58			57		
29	186			77			221			195			154			122			212			191			61			62		
30	200			85			226			199			159			127			221			198			63			62		

~ 180 nm hp ~

	Mode	Pixel	Algorithm	Sensitivity	#runs
а	DDR	P90	UPA	high	10

	0		1		2		3		4	ļ	5		8	ì	7		8		9		
No	pin hole		line cut		bridge		bridge		1x1 clear extension		1x1 opaque extension		1x2 clear extension		1x2 opaque extension		small CD		large CD		
	size	а	size	а	size	а	size	а	size	а	size	а	size	а	size	а	size	а	size	а	
0																					
1																	4.0		1.8		
2					29												5.1		2.4		
3					42												9.3		6.1		
4					52												9.5		7.8		
5					62				21				29				13.2		7.0		
6					76		22		22				33		33		13.1		12.4		
7					117		21		37				45		39		16.6		13.3		
8					125		35		46				62		40		18.6		15.0		
9					131		52		49		35		68		52		20.6		19.4		
10					137		53		51		25		72		53		22.9		21.1		
11					137		54		58		41		83		67	30	24.9		23.1		
12					143	20	64		65		42		87		72		26.8		24		
13					145	50	87		78		39		93		74		28.9		26.4		
14	38				148		105		79	10	41		103		86		31.7		29.4		
15	56				152		112		84	80	53		109		96		33.1		30.4		
16	112				154		119		89	10	56		114		100		37.1		32.4		
17	135				156		126		93		62		127		105		39.4		33.4		
18	140				158		129		101		63	20	131		112		40.6		37.6		
19	143				159		133		103		71		142		117		41.3		40.7		
20	156				164		140		109		74		146		127		44		41		
21	156				164		145		115		80		157		132		48		43		
22	160		26	40	165		150		122		85		182		140		51		45		
23	161		95		168		151		130		92		202		149		49		47		
24	165		119		172		160		156		95		207		153		52		49		
25	169		128		171		157		164		103		213		162		57		52		
26	176		137		174		165		167		107		220		185		60		55		
27	177		150		176		163		173		118		224		196		60		56		
28	180		154		177		169		175		124		227		218		63		59		
29	181		162		183		169		179		153		236		228		65		61		
30	190		164		183		180		183		164		236		229		69		63		

Sensitivity difference between hp260nm to hp180nm

Minimum defect size detected by DD mode

DUV review images of real defect

Sample Si capping w/o buffer / Inspection mode: DDR

Naturally occurring clear defects were not observed.

Wafer print samples of program defect

Main pattern size 325nm hp on mask (65nm on wafer)

Wafer print images: ASET

Summary

- EUV mask defect inspection was evaluated using current DUV inspection tool.
 - DUV inspection tool has potential for EUV mask defect inspection.
 - (Need sensitivity improvement for 3X nm node and beyond)
 - Inspection sensitivity difference was not observed between w/ and w/o buffer surface.
 - Defect sensitivity of hp180nm pattern was slightly lower than hp 260nm pattern.
 - Inspection sensitivity of Ru capping sample was close to Si capping sample.

Future work

- Defect inspection using smaller pixel size / shorter wave length light

Acknowledgement

We would like to thank

- Dr. Shoki of HOYA for DUV reflectivity data
- ASET, SEMATECH and LBNL for wafer print data of program defect

